当代财经 ›› 2018, Vol. 0 ›› Issue (11): 62-.

• • 上一篇    

利用网络搜索大数据实现对CPI的短期预报及拐点预测——基于混频抽样数据模型的实证研究

刘宽斌1,张涛2   

  1. (1. 中国社会科学院大学 研究生院,北京 102488;2. 中国社会科学院 数量经济与技术经济研究所,北京 100732)
  • 收稿日期:2018-08-17 发布日期:2021-01-21
  • 作者简介:刘宽斌,中国社会科学院大学博士研究生,主要从事网络大数据应用、宏观经济预测研究;张 涛,中国社会科学院研究员,博士生导师,主要从事宏观经济模型、经济政策研究,通讯作者联系方式lkb170@163.com。

Short-Term and Inflection Point Forecasting of CPI by Using Internet Searching Big Data: An Empirical Study Based on MIDAS Model

LIU Kuan-bin1, ZHANG Tao2   

  1. (1. University of Chinese Academy of Social Sciences, Beijing 102488; 2. Institute of Quantitative & Technical Economics of CASS, Beijing 100732, China)
  • Received:2018-08-17 Published:2021-01-21

摘要: 消费者价格指数(CPI)对国家宏观经济运行监测及管理具有十分重要的作用,及时有效预测其未来走势有利于国家及时采取合理调控措施。为此,从价格决定理论出发,构建商品价格波动与个体网络搜索行为之间关系的逻辑框架,并建立利用网络搜索指数日频率数据实现对月度CPI预测的混频抽样数据模型(MIDAS)。模型模拟结果表明:(1)利用网络搜索高频数据的预测方法能提高CPI样本内拟合及样本外预测的精度;(2)利用网络搜索高频数据能够提高捕捉CPI趋势中“拐点”的成功率;(3)利用网络搜索高频数据能够在早于官方公布数据前大约半个月时间提供具有较高预测精度的CPI预测值。

关键词: 网络搜索大数据,CPI,MIDAS模型,短期预报,“拐点”预测

Abstract: The CPI index plays an important role in monitoring and managing the operation of a country’s macro economy, and the timely and effective prediction of its future trend is conducive for the country to take reasonable regulatory measures in time. Therefore, starting from the price determination theory, this paper constructs a logical framework for the relationship between commodity price volatility and individual web search behavior, then it establishes a mixed-frequency data sampling model (MIDAS) for monthly CPI prediction by using the daily frequency data of network search index. The findings show that: (1) the prediction method using web searching high frequency data can improve the accuracy of both the inside matching and outside prediction of CPI samples; (2) the high frequency data using web search can improve the success rate of capturing the“inflection point”in the CPI trend; (3) the high frequency data using web searching can provide the value of CPI forecasting with higher prediction accuracy approximately half a month before the official release of CPI data.

Key words: Internet searching big data; MIDAS model; CPI; short-term forecasting; prediction of inflection point