当代财经 ›› 2025, Vol. 0 ›› Issue (2): 3-12.

• 理论经济 •    下一篇

住房租赁市场中的算法差别定价行为与机制研究

陈立中, 唐恬   

  1. 华中师范大学 经济与工商管理学院,湖北 武汉 430079
  • 收稿日期:2024-07-30 修回日期:2024-11-27 发布日期:2025-02-12
  • 通讯作者: 唐恬,华中师范大学博士研究生,主要从事平台经济、互联网反垄断与竞争行为研究,联系方式tangtian95@mails.ccnu.edu.cn。
  • 作者简介:陈立中,华中师范大学教授,博士生导师,经济学博士,主要从事房地产大数据和住房市场微观行为研究。
  • 基金资助:
    国家社会科学基金项目“大数据算法视角下市场歧视的量化测算与规制策略研究”(21BJL124); 中央高校基本科研业务费专项资金资助项目(CCNU24ZZ048)

Research on the Behavior and Mechanism of Algorithmic Differential Pricing in Housing Rental Market

Chen Li-zhong, Tang Tian   

  1. Central China Normal University, Wuhan 430079, China
  • Received:2024-07-30 Revised:2024-11-27 Published:2025-02-12

摘要: 大数据与算法的应用深度改变了传统的定价方式,住房租赁市场中的多种租赁方式和定价方法,为研究算法定价行为及其机制提供了场景。基于X市住房租赁市场微观数据的实证研究发现:与传统定价方式相比,算法定价显著降低了租赁价格,算法定价节省了企业的人工成本,进而减轻租客的租房成本,增加租客福利;从供给侧细分样本后发现,现有证据不能证明住房租赁专营企业利用数据和技术优势,通过算法定价来剥夺租客的福利;从需求侧细分样本后发现,算法定价存在针对租客户籍和年龄的差别定价行为;算法定价的动态效应表明,算法会随着时间向惠及租客的方向优化,同时根据企业外部市场环境变化调整价格。这意味着支持算法等数字技术在住房租赁市场中的应用、规范算法驱动的不合理的差别定价行为、大力培育专业化与高素质房地产经纪人对住房租赁市场可持续发展意义重大。

关键词: 算法定价, 价格机制, 大数据, 住房租赁市场

Abstract: The profound application of big data and algorithms has changed the traditional pricing methods. A variety of rental methods and pricing methods in the housing rental market have provided a scenario for studying the pricing behavior and mechanism of algorithms. The empirical research based on the micro-data of the housing rental market in X city reveals that: compared with traditional pricing methods, the algorithmic pricing significantly reduces the rental price, that is, the leasing enterprises can reduce the labor cost to alleviate the rental pressure of tenants, which increases the welfare of tenants through algorithmic pricing. After subdividing the samples on the supply side, it is found that the specialized housing rental enterprises do not take advantage of data and technology to deprive tenants of their welfare through algorithmic pricing. After subdividing the samples on the demand side, it is found that the algorithm pricing has differential pricing behaviors based on the domicile and age of the tenants. The dynamic effect of algorithmic pricing indicates that the algorithm will improve in favor of tenants over time and adjust the price according to changes of the external market environment. This means that supporting the application of digital technologies such as algorithms in the housing rental market, regulating the unreasonable differential pricing behavior driven by algorithm and vigorously cultivating professional and high-quality real estate brokers are of great significance to the sustainable development of the housing rental market.

Key words: algorithmic pricing, price mechanism, big data, housing rental market

中图分类号: