当代财经 ›› 2020, Vol. 0 ›› Issue (12): 63-74.

• 现代金融 • 上一篇    下一篇

网贷借款者违约风险识别——基于借款描述语言特征的视角

王三兴1, 岳磊磊1, 文雁兵2, 熊格3   

  1. 1.安徽大学 经济学院,安徽 合肥 230601;
    2.浙江财经大学 浙江经济研究院,浙江 杭州 310018;
    3.成都量子数能科技有限公司,四川 成都 610041
  • 收稿日期:2020-05-13 修回日期:2020-10-30 出版日期:2020-12-15 发布日期:2021-01-07
  • 通讯作者: 岳磊磊,安徽大学博士研究生,主要从事金融市场效率、网络金融研究,联系方式yuellkd@126.com
  • 作者简介:文雁兵,浙江财经大学副教授,博士,主要从事新制度经济学、浙江经济研究;熊格,成都量子数能科技有限公司总经理,硕士,主要从事互联网金融风险管理与控制研究。王三兴,安徽大学教授,博士生导师,博士,主要从事国际金融、金融市场研究
  • 基金资助:
    国家社会科学基金项目“纠正人力资本错配促进经济高质量增长研究”(18BJL025); 国家社会科学基金项目“利率放开后金融市场间利率传导阻滞的成因、效应与对策研究”(19BJY241)

Identification of Default Risks of Online Loan Borrowers:From the Perspective of Language Features in Loan Description

WANG San-xing1, YUE Lei-lei1, WEN Yan-bing2, XIONG Ge3   

  1. 1. Anhui University, Hefei 230601;
    2. Zhejiang University of Finance and Economics, Hangzhou 310018;
    3. Chengdu Quantum Data Intelligence Technology Co., LTD., Chengdu 610041, China
  • Received:2020-05-13 Revised:2020-10-30 Online:2020-12-15 Published:2021-01-07

摘要: 基于借款描述语言特征视角,使用我国A网贷平台公司——年借贷数据,通过研究如何有效识别网贷借款者违约风险,发现借款描述语言难读程度、语言情感积极程度及语言长度与网贷借款者违约风险呈正相关,而借款描述语言具体程度与网贷借款者违约风险呈负相关;借款描述语言难读程度越高、语言情感积极程度越高、语言长度越长及语言具体程度越低的网贷借款者,违约风险越高。网贷平台可以根据借款描述语言特征与网贷借款者违约风险之间的关系,优化风险评估体系、完善风险控制模型、丰富风险控制策略,有效地识别并降低网贷借款者违约风险。

关键词: 网贷, 违约, 风险识别, 借款描述, 语言特征

Abstract: From the perspective of language features in loan description, this paper makes use of the loan data of online loan platform Company A in China from 2010 to 2018 to study how to effectively identify the default risks of online loan borrowers. The results show that such features as the degree of difficulty in reading the loan description language, the degree of positive language emotion and the length of the loan description language are positively correlated with the default risks of online loan borrowers, while the specific degree of the loan description language is negatively correlated with the default risks of online loan borrowers. The more difficult to read the loan description language is, the more positive the language emotion is, the longer the language length is, and the less specific the language is, the higher the default risks will be. According to the relationship between the characteristics of the loan description language and the default risks of the online loan borrowers, the online loan platforms can effectively identify and reduce the default risks of the online loan borrowers by optimizing the risk-assessment system, improving the risk-control model, and enriching the risk-control strategies.

Key words: online loan, default, risk identification, loan description, language characteristics

中图分类号: