当代财经 ›› 2018, Vol. 0 ›› Issue (12): 49-.

• • 上一篇    

月度CPI增速的高频数据预测方法

梁泳梅1,董敏杰2   

  1. (1. 中国社会科学院 工业经济研究所,北京 100836;2. 中信建投证券股份有限公司 研究发展部,北京 100020)
  • 收稿日期:2018-08-11 发布日期:2021-01-21
  • 作者简介:梁泳梅,中国社会科学院副研究员,博士,主要从事工业与劳动经济学研究;董敏杰,中信建投证券股份有限公司宏观分析师,博士,主要从事宏观经济研究,通讯作者联系方式dmj2527@163.com。

On the Method to Predict Monthly CPI Growth with High-Frequency Data

LIANG Yong-mei1, DONG Min-jie2   

  1. (1. Chinese Academy of Social Sciences, Beijing 100836; 2. China Securities Co., Ltd., Beijing 100020, China)
  • Received:2018-08-11 Published:2021-01-21

摘要: 受多因素影响,基于传统方法的消费者价格指数(CPI)增速预测准确性有所下降,因此需要构建新的预测方法。新方法的不同之处在于:第一,把主流预测框架由“食品+非食品”二分法扩展为“食品+工业消费品+服务”的三分法框架,使预测的内容更为全面;第二,根据城镇居民消费支出结构、投入产出表等数据,调整了CPI分项的权重体系;第三,对春节因素客观化和具体化,细分为“节前”“节中”“节后”三种情形并量化,并考察其对各分项价格变化的影响。回溯检验显示,新方法对CPI增速的预测效果要明显优于传统方法,预测误差在0.1个百分点以内的分布频率接近80%,预测准确率也较现有方法平均高出近15个百分点。

关键词: CPI预测,食品,非食品,高频数据,春节因素

Abstract: The accuracy of CPI growth prediction based on traditional methods has somewhat declined due to the influence of many factors, so a new predication method is needed. The differences of the new methods are as follows: firstly, the mainstream forecasting framework is changed from the bisection method of“food + non-food”into the trichotomy framework of“food + industrial consumer goods + services”, which has a more comprehensive content; secondly, the weight system of CPI sub-items is adjusted, according to such data as the urban residents consumption expenditure structure, the input-output table and so on; thirdly, it takes into account the factors of Spring Festival objectively and specifically, dividing them into the three situations, i.e., pre-festival, in-festival and post-festival, then each of them is quantified, so as to examine their impacts on the price changes of each sub-item. The retrospective test shows that the result of the new method is notably superior to the traditional methods in predicting the CPI growth. The distribution frequency of forecast error within 0.1 percentage point is close to 80%, and the forecast accuracy is nearly 15 percentage points higher than the results of the existing methods.

Key words: CPI prediction; food; non-food; high-frequency data; factor of Spring Festival