江西财经大学学报 ›› 2025, Vol. 0 ›› Issue (4): 112-123.

• 法与经济 • 上一篇    下一篇

人工智能大模型价值对齐的协同进路

郑煌杰   

  1. 中南大学 法学院,湖南 长沙 410083
  • 收稿日期:2025-03-09 修回日期:2025-05-25 出版日期:2025-07-25 发布日期:2025-09-17
  • 作者简介:郑煌杰,中南大学博士研究生,主要从事人工智能法研究,联系方式Yuppiejay@163.com。
  • 基金资助:
    国家社会科学基金重大项目“习近平总书记关于民法典重要论述的学理阐释及实践研究”(24&ZD123); 湖南省社会科学基金项目“人工智能提供者的义务规范研究”(24YB0049)

A Collaborative Approach to Aligning the Value of Artificial Intelligence Big Models

Zheng Huang-jie   

  1. Central South University, Changsha 410083, China
  • Received:2025-03-09 Revised:2025-05-25 Online:2025-07-25 Published:2025-09-17

摘要: 相较于ChatGPT,国产大模型DeepSeek在模型架构、训练范式与推理机制上已取得显著性创新。这意味着,当前大模型已实现由机械式感知反馈机制向类人主体认知决策范式的质态跨越,由此引发了数据输入失序、算法运行失控与内容输出失范风险。价值对齐的核心在于推动大模型从工具理性向价值理性转变,具有一定的必要性与可行性,但其也面临技术性挑战与规范性难题,成因则在于尚未建立健全的价值对齐体系。鉴于此,亟须采取技术规制、伦理调适与法律治理的协同范式,即以风险分层理念为基础构建数据合规框架,加强算法决策全周期溯源监管,优化内容治理归责架构;完善伦理共识提炼机制,改进伦理审查响应系统,塑造伦理主体责任网络;确立层次分明的价值对齐标准,明晰权责统一的价值对齐性质,设计动态演进的价值对齐评估方法,以加快形成新质生产力推进中国式现代化建设。

关键词: 人工智能大模型, 价值对齐, 协同治理, 对齐标准, 对齐评估

Abstract: Compared to ChatGPT, the domestic large-scale model DeepSeek has achieved significant innovation in model architecture, training paradigm, and inference mechanism. This means that the current large-scale model has achieved a qualitative leap from a mechanical perception feedback mechanism to a human like subject cognitive decision-making paradigm, which has also led to risks of data input disorder, algorithm running out of control, and content output disorder. The core of value alignment lies in promoting the transformation of big models from instrumental rationality to value rationality, which has certain necessity and feasibility. However, it also faces technical challenges and normative difficulties, and the reason lies in the lack of a sound value alignment system. In view of this, it is urgent to adopt a collaborative paradigm of technical regulation, ethical adjustment, and legal governance, that is, to build a data compliance framework based on the risk stratification concept, strengthen the full cycle traceability supervision of algorithm decision-making, and optimize the content governance accountability framework; improve the mechanism for extracting ethical consensus, enhance the ethical review response system, and shape the ethical subject responsibility network; establish a clear hierarchy of value alignment standards, clarify the nature of value alignment with the unity of power and responsibility, and design a value alignment evaluation method for dynamic evolution, so as to accelerate the formation of new quality productivity to promote the construction of Chinese path to modernization.

Key words: large-scale artificial intelligence model, value alignment, collaborative governance, alignment standards, alignment evaluation

中图分类号: