[1] 蔡栋梁, 王聪, 邱黎源. 信贷约束对农户消费结构优化的影响研究——基于中国家庭金融调查数据的实证分析[J]. 农业技术经济, 2020, (3): 84-96. [2] 陈茜, 段伟. 农户风险偏好对林业投入决策的影响研究——以广东省集体林区为例[J]. 财经理论与实践, 2019, (5): 55-61. [3] 陈清华, 张盼. 农户借贷需求的影响因素分析[J]. 农业科学研究, 2017, (4): 79-83. [4] 程娅, 李善民. 小额信贷与农户收入增长关系研究——基于PSM模型的经验证据分析[J]. 价格理论与实践, 2020, (6): 121-124. [5] 郭峰, 王靖一, 王芳, 等. 测度中国数字普惠金融发展: 指数编制与空间特征[J]. 经济学(季刊),2020, (4): 1401-1418. [6] 郭晔, 未钟琴, 方颖. 金融科技布局、银行信贷风险与经营绩效——来自商业银行与科技企业战略合作的证据[J]. 金融研究, 2022, (10): 20-38. [7] 黄惠春, 管宁宁. 商业性小额信贷在贫困地区有需求吗——基于内蒙古自治区农户的调查[J]. 贵州财经大学学报, 2021, (1): 102-111. [8] 李继尊. 关于互联网金融的思考[J]. 管理世界, 2015, (7): 1-7+16. [9] 李建军, 姜世超. 银行金融科技与普惠金融的商业可持续性——财务增进效应的微观证据[J]. 经济学(季刊),2021, (3): 889-908. [10] 李绍平, 秦明, 董永庆. 数字普惠金融背景下的小额信贷与农户收入[J]. 经济学报, 2021, (1): 216-234. [11] 刘慧超, 王书华. 数字化转型对中小银行风险水平影响研究[J]. 江西财经大学学报, 2023, (4): 23-37. [12] 任重, 郭焱. 价值感知、社会资本对农户秸秆还田技术采纳行为的影响[J]. 江西财经大学学报, 2022, (4): 97-107. [13] 宋敏, 周鹏, 司海涛. 金融科技与企业全要素生产率——“赋能”和信贷配给的视角[J]. 中国工业经济, 2021, (4): 138-155. [14] 王国刚. 从金融功能看融资、普惠和服务“三农”[J]. 中国农村经济, 2018, (3): 2-14. [15] 姚健, 臧旭恒. 普惠金融、流动性约束与家庭消费[J]. 财经理论与实践, 2021, (4): 2-9. [16] 张宁, 吴依含. 信用评级对农户创业的影响——基于湖南省1125户农户的调查[J]. 武汉金融, 2021, (11): 21-29. [17] 张宁, 张兵, 吴依含. 农户信用评级对农村商业银行绩效的影响——基于典型试验区的追踪调查[J]. 中国农村经济, 2022, (10): 102-123. [18] 张三峰, 王非, 贾愚. 信用评级对农户融资渠道选择意愿的影响: 基于10省(区)农户信贷调查数据的分析[J]. 中国农村经济, 2013, (7): 72-84. [19] 张世虎, 顾海英. 互联网信息技术的应用如何缓解乡村居民风险厌恶态度?——于中国家庭追踪调查 (CFPS) 微观数据的分析[J]. 中国农村经济, 2020, (10): 33-51. [20] Benjamin D.Household composition, labor Markets, and labor demand: Testing for separation in agricultural household models[J]. Econometrica: Journal of the Econometric Society, 1992: 287-322. [21] Crépon B, Devoto F, Duflo E, et al.Estimating the impact of microcredit on those who take it up: Evidence from a randomized experiment in Morocco[J]. American Economic Journal: Applied Economics, 2015, 7(1): 123-150. [22] Eckel C C, Grossman P J.Sex differences and statistical stereotyping in attitudes toward financial risk[J]. Evolution and Human Behavior, 2002, 23(4): 281-295. [23] Fink G, Jack B K, Masiye F.Seasonal liquidity, rural labor markets, and agricultural production[J]. American Economic Review, 2020, 110(11): 3351-3392. [24] Freedman S, Jin G Z.The information value of online social networks: Lessons from peer-to-peer lending[J]. International Journal of Industrial Organization, 2017, (51): 185-222. [25] Herzenstein M, Sonenshein S, Dholakia U M.Tell me a good story and i may lend you money: The role of narratives in peer-to-peer lending decisions[J]. Journal of Market Research, 2012, (48): l38-149. [26] Islam A.Heterogeneous effects of microcredit: Evidence from large-scale programs in Bangladesh[J]. Journal of Asian Economics, 2015, 37: 48-58. [27] Islam A, Maitra P.Health shocks and consumption smoothing in rural households: Does microcredit have a role to play?[J]. Journal of Development Economics, 2012, 97(2): 232-243. [28] Karlan D, Zinman J.Microcredit in theory and practice: Using randomized credit scoring for impact evaluation[J]. Science, 2011, 332(6035): 1278-1284. [29] Khandker S R.Micro-finance and poverty: Evidence using panel data from Bangladesh[J]. The World Bank Economic Review, 2005, 19(2): 263-286. [30] Klafft M.Peer to peer lending: Auctioning microcredits over the internet[C]. Proceedings of the International Conference on Information Systems, Technology and Management, A. Agarwal, R. Khurana, eds., IMT, Dubai, 2008. [31] Sarwosri A W, Mubhoff O.Are risk attitudes and time preferences crucial factors for crop diversification by smallholder farmers?[J]. Journal of International Development, 2020, 32(6): 922-942. [32] Yesuf M, Bluffstone R A.Poverty, risk aversion, and path dependence in low-income countries: Experimental evidence from Ethiopia[J]. American Journal of Agricultural Economics, 2009, 91(4): 1022-1037. |